2022

Time - 3 hours

Full Marks - 60

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

1. Answer all questions.

 $[1 \times 8]$

- (a) The solution of the differential equation $dy = (1 + y^2)dx$ is
- (b) Write the degree of the differential equation $y = x \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^{-2}$.
- (c) What do you mean by radioactive materials?
- (d) What is SIR Model?
- (e) Write a word equation of simple exponential decay mode.
- (f) The solution of differential equation $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = 0$ is

- (g) Write an example of linear homogeneous differential equation of second order.
- (h) The ordinary differential equation $\frac{d^2u}{dx^2} 2x^2u + \sin x = 0$ is _____. (Choose the correct answer.)
 - (i) Linear and homogeneous
 - (ii) Linear and nonhomogeneous
 - (iii) Nonlinear and homogeneous
 - (iv) Nonlinear and nonhomogeneous

GROUP - B

2. Answer any eight questions.

 $[1\frac{1}{2} \times 8]$

- (a) Find the general solution of $\left(xy\frac{dy}{dx}-1\right)=0$.
- (b) Find the integrating factor of the differential equation

$$\frac{dy}{dx}(x \log x) + y = 2 \log x.$$

(c) Solve the initial value problem $\frac{dy}{dx} + y = 2xe^{-x}$, y(0) = 2, given the General Solution as $y = (x^2 + c)e^{-x}$.

- (d) Write a word equation of lake pollution model.
- (e) What do you mean by radioactive materials?
- (f) Find the general solution of the differential equation y'' + 8y = 0.
- (g) Solve $(D^2 2D + 1)y = e^{-x}$.
- (h) Solve y'' + 6y' + 9y = 0.
- (i) Write word equation of influenza outbreak model.
- (j) Determine possible direction of phase plane trajectories in the phase plane.

GROUP - C

3. Answer any eight questions.

 $[2 \times 8]$

- (a) Find general solution of $\frac{dx}{dy} = (1 + x^2)(1 + y^2)$.
- (b) Solve: $(xy + 2x + y + 2)dx + (x^2 + 2x)dy = 0$.
- (c) Find an integrating factor for the differential equation

$$(x-\ln y)\frac{dy}{dx} = -y \ln y$$

(d) Write word equation for density dependent growth of population.

- (e) Find the residence time of exponential decay compartmental model.
- (f) Find the general solution of the differential equation 2y'' 4y' + 8y = 0.
- (g) Solve $(D^2 + 3D 10)y = 6e^{4x}$.
- (h) Find the particular integral of $(D-2)^2y = e^{2x}$.
- (i) Find an expression for the line for the population to double in size.
- (j) Write compartmental diagram for simple battle model.

GROUP - D

4. Answer any four questions.

[6 × 4

- (a) Verify the following equations are homogeneous and solve them $x^2 \frac{dy}{dx} 3xy 2y^2 = 0$.
- (b) Solve: $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$
- (c) How long will it take for the lake pollution level to reach 5% of its initial level if only fresh water flows into the lake?
- (d) Taking r = 1, k = 10, $h = \frac{9}{10}$ and $X(0) = x_0$ in the initial growth with harvesting Model, investigate the behaviours of the solution of the logistic differential equation.

- (e) Find the P.I. of $(D^3 + 1)y = e^x \cos x + \sin 3x$.
- (f) Find the particular integral of the equation $(D^2 + 2D + 1)y = e^x \sin^{-1}x$ by the method of variation of parameter.
- (g) Find equilibrium points of the coupled system

$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -x$.