2022

Time - 3 hours

Full Marks - 80

Answer all groups as per instructions.

Figures in the right hand margin indicate marks.

The symbols used have their usual meaning.

GROUP - A

1. Fill in the blanks. (all)

[1 × 12

- (a) The number of loops in the curve $r^2 = a^2 \cos 2\theta$ is _____.
- (b) The curve of nth degree and its asymptotes intersect each other at _____ points.
- (c) $\lim_{X \to \infty} \frac{x}{[x]} = \underline{\hspace{1cm}}$
- (d) The curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is symmetrical about ______ axis.
- (e) $\lim_{(x,y)\to(0,0)} \frac{xy^4}{x^2+y^2} = \underline{\hspace{1cm}}$

(f) If
$$f(x, y) = \frac{xy}{x+y}$$
 then $f_x(2, 1) = ______$

(g) If
$$f(x) = x + [x]$$
, then $f'(2^-) =$ _____.

(h) The function f(x) = |2x - 3| is discontinuous at _____

(i) If
$$u = x^3 + y^4$$
 where $x = t^2$ and $y = t^3$, then $\frac{du}{dt} = \underline{\hspace{1cm}}$

- (j) The integrating factor of y(axy + e^x)dx e^x dy is _____
- (k) The P.I. of $(D^2 + 1)y = \cos x$ is _____.
- (I) The Wronskian $W(y_1, y_2)$ of $(D^2 + 1)y = \csc x$ is _____

GROUP - B

- 2. Answer any eight questions.
 - (a) Determine where the loop of the curve $3ay^2 = x(x a)^2$ lie
 - (b) Find the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
 - (c) Find the radius of curvature of the curve $y = 4 \sin 2x \sin 4x$ at $x = \frac{\pi}{4}$.
 - (d) Write L' Hospital's Rule.

- (e) Write Rolle's theorem.
- (f) If $u = x^2 + xy + y^2$, x = r + t, y = r t, then find $\frac{\partial u}{\partial t}$.
- (g) If $u = x^2y$, where $x^2 + xy + y^2 = 1$, then find $\frac{du}{dx}$.
- (h) Find P.I. of $(D-2)^2y = e^{2x}$.
- (i) Solve: $y = px + \frac{a}{p}$.
- (i) Solve: $y^2 + p^2 = a^2$

GROUP - C

- 3. Answer any eight questions.
 - (a) Find the centre and radius of the sphere

$$2x^2 + 2y^2 + 2z^2 - 4x + 4y - 8z + 10 = 0$$

- (b) Trace the curve r = a
- (c) Find $\lim_{x \to 0} \sin \frac{1}{x}$
- (d) Find $\lim_{x\to 0} x^{\sin x}$

P.T.O.

[3 × 8

- (e) Find the Maclaurin's series of f(x) = log(1 + x).
- (f) Show that the equation $10x^4 6x + 1 = 0$ has a root between 0 and 1.
- (g) Show that the function $x^4 + x^2y + y^2$ has a minimum at (0, 0).
- (h) Find $\frac{d^2y}{dx^2}$, if $x^3 + y^3 3axy = 0$.
- (i) Find the P.I. of $(D^2 + 1)y = \csc x$ using the method of variation of parameter.
- (j) Find the P.I. of $(D^2 + 4)y = x \sin x$

GROUP - D

4. Answer any four questions.

[7 × 4

- (a) Prove that the length of the loop of the curve $3ay^2 = x(x-a)^2$ is $\frac{4a}{\sqrt{3}}$.
- (b) State and prove Taylor's theorem with Cauchy's form of remainder.
- (c) If $u = \tan^{-1} \left(\frac{x + y}{\sqrt{x} + \sqrt{y}} \right)$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{1}{4} \sin 2u$.

(d) If f

the

(e) 3

(f)

(g) St

APVN-KNJ

t between

at (0, 0).

of varia-

$$(x-a)^2$$

of re-

12u.

(d) If
$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0), \end{cases}$$

then show that $f_{xy}(0, 0) \neq f_{yx}(0, 0)$.

- (e) Show that IVP $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = 2e^x$, y(0) = 1, y'(0) = 1.
- (f) Solve $p^2x^2 2xyp + 2y^2 x^2 = 0$.
- (g) State and prove Taylor's theorem with Lagrange's form of remainder.