No. of Printed Pages : 5

Sem-I(Arts&Sc)-Math-CC-II (Reg&Back)

2020-21

Time - 3 hours

Full Marks - 80

Answer **all groups** as per instructions. Figures in the right hand margin indicate marks. Symbols used have their usual meaning.

<u>GROUP – A</u>

1. Answer <u>all</u> questions or fill in the blanks as required. [1 × 12

- (a) $5 \in \{x + 2y : x \in \{0, 1, 2\}, y \in \{-2, 0, 2\}$. Write true or false.
- (b) Find A^C (with respect to R), where A = $(1, \infty) \cup (-\infty, -2]$.
- (c) If gcd(a, b) = 1, then lcm(a, b) = ab. Write true or false.
- (d) If $a_1 = 5$ and $a_{k+1} = 3a_k$ for $k \ge 1$, then $a_3 = _$.
- (e) If $n \in N$, then P(n, 1) =_____.
- (f) The expansion of $(3x \frac{5}{x})^8$ has a constant term. Write true or false.

(g) If A is involuntory, then $A^2 =$ _____.

(h) If A has two identical rows, then det A = _____

[2 × 8

- (i) If λ is an eigenvalue of A, then the eigenvalue of A^2 is _____.
- (j) The number of edges of K_5 is _____.
- (k) Two edges are said to be adjacent if they have a _____ in common.
- (I) Write the adjacency matrix of K_2 .

<u>GROUP – B</u>

- 2. Answer any eight of the following questions.
 - (a) Show that $p \land (\neg p)$ is a contradiction.
 - (b) Prove that $A \cap A = A$.
 - (c) Show that $f: \mathbb{R} \to (1, \infty)$ and $g: (1, \infty) \to \mathbb{R}$ defined by

 $f(x) = 3^{2x} + 1$, $g(x) = \frac{1}{2} \log_3 (x - 1)$ are inverses.

- (d) Given three consecutive integers a, a + 1, a + 2. Prove that one of them is divisible by 3.
- (e) A man. woman, boy, girl, dog and cat are walking down a long and winding road one after the other. In how many ways can this happen if the dog comes first ?

(f) Find A and B if A + B =
$$\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$$
 and A - B = $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$.

- (g) For all sets A and B, if $A \subseteq B$ then prove that $P(A) \subseteq P(B)$.
- (h) By elementary row transformations, find A⁻¹,

where $A = \begin{bmatrix} 1 & 2 \\ 3 & 7 \end{bmatrix}$.

- (i) Determine the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ -4 & 0 & 5 \end{bmatrix}$.
- (j) Define a pseudograph. Give one example.
- (k) Draw the graph $W_5 C_5$.
- (I) Define a bridge. Give one example.

<u>GROUP – C</u>

3. Answer any eight of the following.

[3 × 8

- (a) Define $f: Z \rightarrow Z$ by $f(x) = x^2 5x + 5$. Verify f is one-one and / or onto.
- (b) Show that (-1, 2) and (-5, 4) have the same cardinality.
- (c) If $a \equiv x \pmod{n}$ and $b \equiv y \pmod{n}$, then prove that

 $a + b \equiv x + y \pmod{n}$ and $ab \equiv xy \pmod{n}$.

(d) How many solutions are there of x + y + z = 17 subject to constraints x ≥ 1, y ≥ 2, z ≥ 3 ? (e) Show that in any set of eleven integers, there are two whose difference is divisible by 10.

(f) Find x, y, z and t if
$$2\begin{bmatrix} x & z \\ y & t \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$$

(g) Show that the sequence $\{2, 3, 4, 5, \dots, 2 + n, \dots\}$ for $n \ge 0$ satisfies the recurrence relation $a_k = 2a_{k-1} - a_{k-2}$, $k \ge 2$.

5.

6.

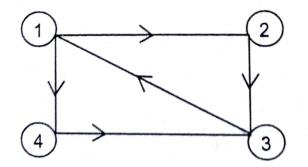
7

(h) Find the minors and cofactors of each element of 2nd row

	1	2	0	
of the determinant	1	5	1	
	3	7	1	ľ

(i) If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 8 \end{bmatrix}$$
, verify that $A(adj A) = |A| I$.

- (j) Is there a simple graph corresponding to the degree sequence (2, 2, 4, 6)? Justify your answer.
- (k) Show that C_6 is a bipartite graph.
- (I) Is the given graph strongly connected ?



<u>GROUP – D</u>

Answer any four questions.

4. Show that

$$[(p \lor q) \lor ((q \lor (\neg r)) \land (p \lor r))] \Leftrightarrow \neg [(\neg p) \land (\neg q)].$$

[7

[7

- 5. Let a, $b \in Z$, $b \neq 0$. Then show that there exist unique integers q and r, with $0 \le r < |b|$, such that a = qb + r. [7]
- 6. Solve the recurrence relation

$$a_n = 5a_{n-1} - 2a_{n-2} + 3n^2$$
, $n \ge 2$, given $a_0 = 0$, $a_1 = 3$.

- Find, how many integers between 1 and 60 that are not divisible by 2 nor by 3 and nor by 5. Also determine the number of integers divisible by 5, not by 2, not by 3.
- 8. Show that a simple graph with n vertices and k components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges. [7
- 9. Solve the equations 5x + 3y + 7z = 4, 3x + 2y + 26z = 9, 7x + 2y + 10z = 5 by matrix method.
- 10. Find the eigenvalues and eigenvectors of the matrix [7

$$\mathsf{A} = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}.$$

APV-KNJ-Sem-I-21-Math(C-2)/15